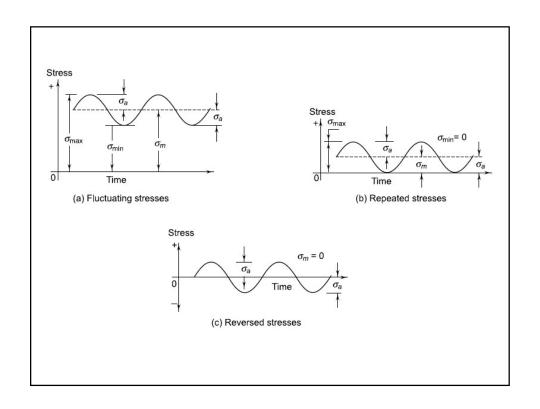
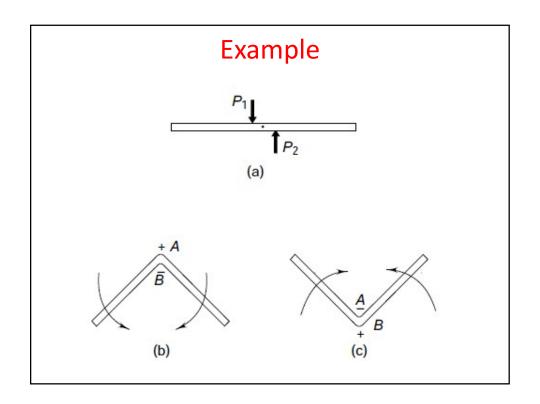
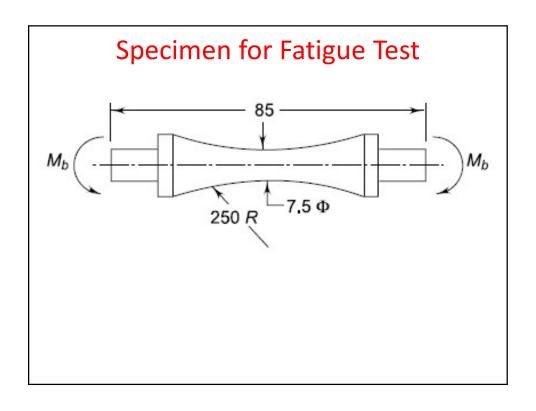
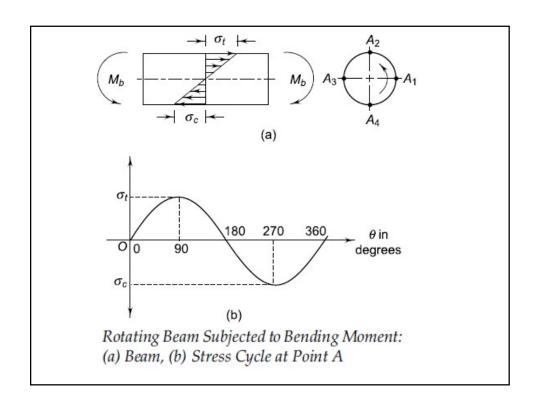
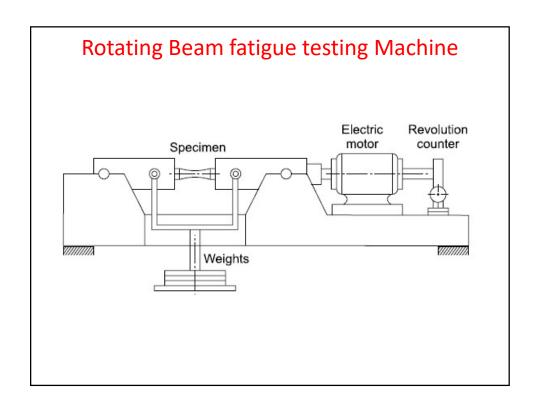
Machine Design-I

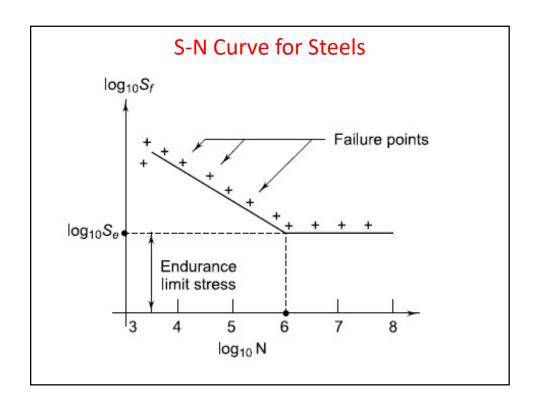

(Session-2018-19)

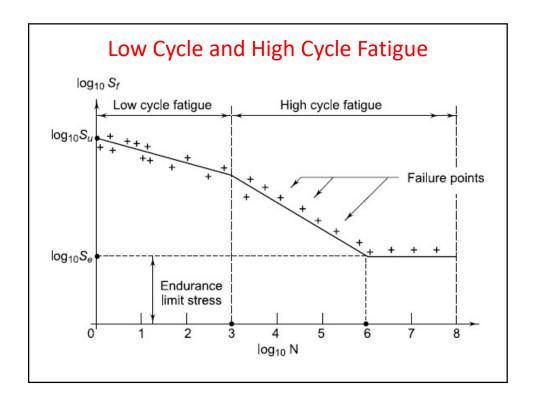

Numericals on Fluctuating Stresses




Faculty:
Rajkumar Sharrma
Assistant Professor
Mechanical Engineering Department
GLA University Mathura- 281406


Numericals Continued on Fluctuating Stresses





Fatigue Stress Concentration Factor

 $K_f = \frac{\text{Endurance limit of the notch free specimen}}{\text{Endurance limit of the notched specimen}}$

Fatigue Stress Concentration Factor

Notch sensitivity is defined as the susceptibility of a material to succumb to the damaging effects of stress raising notches in fatigue loading. The notch sensitivity factor q is defined as

 $q = \frac{\text{Increase of actual stress over nominal stress}}{\text{Increase of theoretical stress over}}$

Endurance Limit Approximate Estimation

$$S_e = K_a K_b K_c K_d S_e'$$

where,

 K_a = surface finish factor

 $K_b = \text{size factor}$

 K_c = reliability factor

 K_d = modifying factor to account for stress concentration.

Surface Finish Factor

Surface finish	а	b
Ground	1.58	-0.085
Machined or cold-drawn	4.51	-0.265
Hot-rolled	57.7	-0.718
As forged	272	-0.995

Size Factor

. .

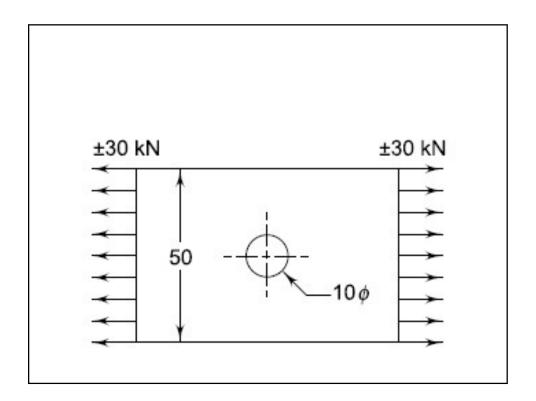
Diameter (d) (mm)	K_b
<i>d</i> ≤ 7.5	1.00
$7.5 < d \le 50$	0.85
d>50	0.75

Reliability Factor

Reliability R (%)	K_c
50	1.000
90	0.897
95	0.868
99	0.814
99.9	0.753
99.99	0.702
99.999	0.659

Modifying Factor

$$K_d = \frac{1}{K_f}$$


Axial Loading

$$(S_e)_a = 0.8 S_e$$

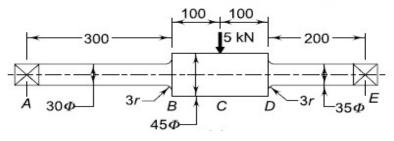
Infinite Life Problems

Example 5.3 A plate made of steel 20C8 $\overline{(S_{ut} = 440 \text{ N/mm}^2)}$ in hot rolled and normalised condition is shown in Fig. 5.28. It is subjected to a completely reversed axial load of 30 kN. The notch sensitivity factor q can be taken as 0.8 and the expected reliability is 90%. The size factor is 0.85. The factor of safety is 2. Determine the plate thickness for infinite life.

Ans: t = 36.84 mm

Finite Life Problems

Example 5.6 A rotating bar made of steel 45C8 $(S_{ut} = 630 \text{ N/mm}^2)$ is subjected to a completely reversed bending stress. The corrected endurance limit of the bar is 315 N/mm². Calculate the fatigue strength of the bar for a life of 90,000 cycles.

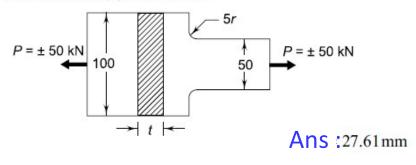

Ans: $S_f' = 386.63 \text{ N/mm}^2$

Finite Life Problem for Practice

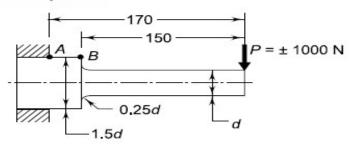
Example 5.7 A forged steel bar, 50 mm in diameter, is subjected to a reversed bending stress of 250 N/mm². The bar is made of steel 40C8 (S_{ut} = 600 N/mm²). Calculate the life of the bar for a reliability of 90%.

Ans: 23 736.2 cycles

Example 5.8 A rotating shaft, subjected to a non-rotating force of 5 kN and simply supported between two bearings A and E is shown in Fig. 5.32(a). The shaft is machined from plain carbon steel 30C8 (S_{ut} = 500 N/mm²) and the expected reliability is 90%. The equivalent notch radius at the fillet section can be taken as 3 mm. What is the life of the shaft?



Ans: N = 15958.79 cycles

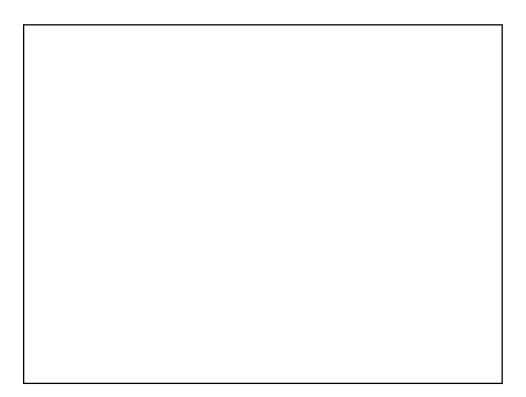

Example 5.4 A rod of a linkage mechanism made of steel 40Cr1 ($S_{ut} = 550 \text{ N/mm}^2$) is subjected to a completely reversed axial load of 100 kN. The rod is machined on a lathe and the expected reliability is 95%. There is no stress concentration. Determine the diameter of the rod using a factor of safety of 2 for an infinite life condition.

Ans: d = 44.78 mm

Example 5.5 A component machined from a plate made of steel 45C8 ($S_{ut} = 630 \text{ N/mm}^2$) is shown in Fig. 5.29. It is subjected to a completely reversed axial force of 50 kN. The expected reliability is 90% and the factor of safety is 2. The size factor is 0.85. Determine the plate thickness t for infinite life, if the notch sensitivity factor is 0.8.

Example 5.10 A cantilever beam made of cold drawn steel 20C8 ($S_{ut} = 540 \text{ N/mm}^2$) is subjected to a completely reversed load of 1000 N as shown in Fig. 5.36. The notch sensitivity factor q at the fillet can be taken as 0.85 and the expected reliability is 90%. Determine the diameter d of the beam for a life of 10000 cycles.

Ans : d = 17.05 mm


Cumulative Damage in Fatigue

Example 5.11 The work cycle of a mechanical component subjected to completely reversed bending stresses consists of the following three elements:

- (i) $\pm 350 \text{ N/mm}^2$ for 85% of time
- (ii) $\pm 400 \text{ N/mm}^2$ for 12% of time
- (iii) $\pm 500 \text{ N/mm}^2$ for 3% of time

The material for the component is 50C4 ($S_{ut} = 660 \text{ N/mm}^2$) and the corrected endurance limit of the component is 280 N/mm^2 . Determine the life of the component.

Ans: N = 62723 cycles

